Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3720, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697958

RESUMO

Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

2.
Nature ; 626(8000): 752-758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326617

RESUMO

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.

3.
Nano Lett ; 23(17): 8035-8042, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638737

RESUMO

Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.

4.
Nano Lett ; 23(14): 6277-6283, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459226

RESUMO

Topological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy-momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.

5.
J Phys Chem Lett ; 14(12): 3069-3076, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36947176

RESUMO

In recent years, the correlation between the existence of topological electronic states in materials and their catalytic activity has gained increasing attention, due to the exceptional electron conductivity and charge carrier mobility exhibited by quantum materials. However, the physicochemical mechanisms ruling catalysis with quantum materials are not fully understood. Here, we investigate the chemical reactivity, ambient stability, and catalytic activity of the topological nodal-line semimetal AuSn4. Our findings reveal that the surface of AuSn4 is prone to oxidation, resulting in the formation of a nanometric SnO2 skin. This surface oxidation significantly enhances the material's performance as a catalyst for the hydrogen evolution reaction in acidic environments. We demonstrate that the peculiar atomic structure of oxidized AuSn4 enables the migration of hydrogen atoms through the Sn-O layer with a minimal energy barrier of only 0.19 eV. Furthermore, the Volmer step becomes exothermic in the presence of Sn vacancies or tin-oxide skin, as opposed to being hindered in the pristine sample, with energy values of -0.62 and -1.66 eV, respectively, compared to the +0.46 eV energy barrier in the pristine sample. Our model also suggests that oxidized AuSn4 can serve as a catalyst for the hydrogen evolution reaction in alkali media. Additionally, we evaluate the material's suitability for the carbon dioxide reduction reaction, finding that the presence of topologically protected electronic states enhances the migration of hydrogen atoms adsorbed on the catalyst to carbon dioxide.

6.
J Phys Chem Lett ; 14(13): 3120-3125, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36952263

RESUMO

Nonmagnetic chiral crystals are a new class of systems hosting Kramers-Weyl Fermions, arising from the combination of structural chirality, spin-orbit coupling (SOC), and time-reversal symmetry. These materials exhibit nontrivial Fermi surfaces with SOC-induced Chern gaps over a wide energy range, leading to exotic transport and optical properties. In this study, we investigate the electronic structure and transport properties of CdAs2, a newly reported chiral material. We use synchrotron-based angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT) to determine the Fermiology of the (110)-terminated CdAs2 crystal. Our results, together with complementary magnetotransport measurements, suggest that CdAs2 is a promising candidate for novel topological properties protected by the structural chirality of the system. Our work sheds light on the details of the Fermi surface and topology for this chiral quantum material, providing useful information for engineering novel spintronic and optical devices based on quantized chiral charges, negative longitudinal magnetoresistance, and nontrivial Chern numbers.

7.
Adv Mater ; 35(10): e2209557, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36633006

RESUMO

The zero-magnetic-field nonlinear Hall effect (NLHE) refers to the second-order transverse current induced by an applied alternating electric field; it indicates the topological properties of inversion-symmetry-breaking crystals. Despite several studies on the NLHE induced by the Berry-curvature dipole in Weyl semimetals, the direct current conversion by rectification is limited to very low driving frequencies and cryogenic temperatures. The nonlinear photoresponse generated by the NLHE at room temperature can be useful for numerous applications in communication, sensing, and photodetection across a high bandwidth. In this study, observations of the second-order NLHE in type-II Dirac semimetal CoTe2 under time-reversal symmetry are reported. This is determined by the disorder-induced extrinsic contribution on the broken-inversion-symmetry surface and room-temperature terahertz rectification without the need for semiconductor junctions or bias voltage. It is shown that remarkable photoresponsivity over 0.1 A W-1 , a response time of approximately 710 ns, and a mean noise equivalent power of 1 pW Hz-1/2 can be achieved at room temperature. The results open a new pathway for low-energy photon harvesting via nonlinear rectification induced by the NLHE in strongly spin-orbit-coupled and inversion-symmetry-breaking systems, promising a considerable impact in the field of infrared/terahertz photonics.

8.
Nano Lett ; 23(3): 902-907, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36689192

RESUMO

Magnetic materials exhibiting topological Dirac fermions are attracting significant attention for their promising technological potential in spintronics. In these systems, the combined effect of the spin-orbit coupling and magnetic order enables the realization of novel topological phases with exotic transport properties, including the anomalous Hall effect and magneto-chiral phenomena. Herein, we report experimental signature of topological Dirac antiferromagnetism in TaCoTe2 via angle-resolved photoelectron spectroscopy and first-principles density functional theory calculations. In particular, we find the existence of spin-orbit coupling-induced gaps at the Fermi level, consistent with the manifestation of a large intrinsic nonlinear Hall conductivity. Remarkably, we find that the latter is extremely sensitive to the orientation of the Néel vector, suggesting TaCoTe2 as a suitable candidate for the realization of non-volatile spintronic devices with an unprecedented level of intrinsic tunability.

9.
Small ; 19(1): e2205329, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344449

RESUMO

The exotic electronic properties of topological semimetals (TSs) have opened new pathways for innovative photonic and optoelectronic devices, especially in the highly pursuit terahertz (THz) band. However, in most cases Dirac fermions lay far above or below the Fermi level, thus hindering their successful exploitation for the low-energy photonics. Here, low-energy type-II Dirac fermions in kitkaite (NiTeSe) for ultrasensitive THz detection through metal-topological semimetal-metal heterostructures are exploited. Furthermore, a heterostructure combining two Dirac materials, namely, graphene and NiTeSe, is implemented for a novel photodetector exhibiting a responsivity as high as 1.22 A W-1 , with a response time of 0.6 µs, a noise-equivalent power of 18 pW Hz-0.5 , with outstanding stability in the ambient conditions. This work brings to fruition of Dirac fermiology in THz technology, enabling self-powered, low-power, room-temperature, and ultrafast THz detection.

10.
Nano Lett ; 22(17): 7034-7041, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36039834

RESUMO

Two-dimensional van der Waals magnetic semiconductors display emergent chemical and physical properties and hold promise for novel optical, electronic and magnetic "few-layers" functionalities. Transition-metal iodides such as CrI3 and VI3 are relevant for future electronic and spintronic applications; however, detailed experimental information on their ground state electronic properties is lacking often due to their challenging chemical environment. By combining X-ray electron spectroscopies and first-principles calculations, we report a complete determination of CrI3 and VI3 electronic ground states. We show that the transition metal-induced orbital filling drives the stabilization of distinct electronic phases: a wide bandgap in CrI3 and a Mott insulating state in VI3. Comparison of surface-sensitive (angular-resolved photoemission spectroscopy) and bulk-sensitive (X-ray absorption spectroscopy) measurements in VI3 reveals a surface-only V2+ oxidation state, suggesting that ground state electronic properties are strongly influenced by dimensionality effects. Our results have direct implications in band engineering and layer-dependent properties of two-dimensional systems.

11.
Nano Lett ; 22(14): 5990-5996, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35787096

RESUMO

Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal-insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal-insulator transition by implementing V2O3 thin films in devices.

12.
Adv Sci (Weinh) ; 9(16): e2105114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35384406

RESUMO

The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2 ), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.

13.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159903

RESUMO

Here, we discuss the key features of electrocatalysis with mitrofanovite (Pt3Te4), a recently discovered mineral with superb performances in hydrogen evolution reaction. Mitrofanovite is a layered topological metal with spin-polarized topological surface states with potential applications for spintronics. However, mitrofanovite is also an exceptional platform for electrocatalysis, with costs of the electrodes suppressed by 47% owing to the partial replacement of Pt with Te. Remarkably, the Tafel slope in nanostructured mitrofanovite is just 33 mV/dec, while reduced mitrofanovite has the same Tafel slope (36 mV/dec) as state-of-the-art electrodes of pure Pt. Mitrofanovite also affords surface stability and robustness to CO poisoning. Accordingly, these findings pave the way for the advent of mitrofanovite for large-scale hydrogen production.

14.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042814

RESUMO

We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.

15.
ACS Nano ; 15(9): 14786-14793, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34472336

RESUMO

Due to their peculiar quasiparticle excitations, topological metals have high potential for applications in the fields of spintronics, catalysis, and superconductivity. Here, by combining spin- and angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory, we discover surface-termination-dependent topological electronic states in the recently discovered mitrofanovite Pt3Te4. Mitrofanovite crystal is formed by alternating, van der Waals bound layers of Pt2Te2 and PtTe2. Our results demonstrate that mitrofanovite is a topological metal with termination-dependent (i) electronic band structure and (ii) spin texture. Despite their distinct electronic character, both surface terminations are characterized by electronic states exhibiting strong spin polarization with a node at the Γ point and sign reversal across the Γ point, indicating their topological nature and the possibility of realizing two distinct electronic configurations (both of them with topological features) on the surface of the same material.

16.
J Phys Chem Lett ; 12(35): 8627-8636, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34472339

RESUMO

By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm-2 and a Tafel slope of 36-49 mV dec-1 associated with the Volmer-Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.

17.
Proc Natl Acad Sci U S A ; 118(33)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385327

RESUMO

Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, [Formula: see text], through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of [Formula: see text] across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the [Formula: see text] symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making [Formula: see text] a model system to functionalize Dirac materials by varying the strength of electron correlations.

18.
Nat Commun ; 12(1): 1584, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707448

RESUMO

The advent of topological semimetals enables the exploitation of symmetry-protected topological phenomena and quantized transport. Here, we present homogeneous rectifiers, converting high-frequency electromagnetic energy into direct current, based on low-energy Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the first implementation. Explicitly, these devices display room-temperature photosensitivity as high as 251 mA W-1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of 22, originating from the interplay between the spin-polarized surface and bulk states. Device performances in terms of broadband operation, high dynamic range, as well as their high sensitivity, validate the immense potential and unique advantages associated to the control of nonequilibrium gapless topological states via built-in electric field, electromagnetic polarization and symmetry breaking in topological semimetals. These findings pave the way for the exploitation of topological phase of matter for high-frequency operations in polarization-sensitive sensing, communications and imaging.

19.
Nanotechnology ; 31(36): 365603, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442980

RESUMO

Porphyrins are a versatile class of molecules, which have attracted attention over the years due to their electronic, optical and biological properties. Self-assembled monolayers of porphyrins were widely studied on metal surfaces in order to understand the supramolecular organization of these molecules, which is a crucial step towards the development of devices starting from the bottom-up approach. This perspective could lead to tailor the interfacial properties of the surface, depending on the specific interaction between the molecular assembly and the metal surface. In this study, we revisit the investigation of the assembly of zinc-tetraphenylporphyrins on Au(111) in order to explore the adsorption of the molecular network on the noble metal substrate. The combined analysis of scanning tunneling microscopy (STM) imaging and core levels photoemission spectroscopy measurements support a peculiar arrangement of the ZnTPP molecular network, with Zn atoms occupying the bridge sites of the Au surface atoms. Furthermore, we prove that, at few-layers coverage, the interaction between the deposited layers allows a relevant molecular mobility of the adlayer, as observed by STM and supported by core levels photoemission analysis.

20.
J Phys Chem Lett ; 9(10): 2510-2517, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29688007

RESUMO

The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...